

Cambridge Institute for Sustainability Leadership Lecture

With Professor Jorgen Randers

The 2052 Forecast: What will happen in the world to 2052? What should be done?

Jorgen Randers Professor Emeritus Climate Strategy BI Norwegian Business School

Cambridge Institute for Sustainability Leadership Cambridge, October 13th, 2016

A Global Forecast for the Next Forty Years

EINE GLOBALE PROGNOSE FÜR DIE NÄCHSTEN 40 JAHRE

A Global Forecast for the Next Forty Years 범춘세계, 나와내이아는 어떤하루를 살고 있을까 Setting in United

2052 – A Global Forecast for the Next Forty Years A forecast of global developments to 2052, predicting that global warming will exceed +2 deg C in mid-century See www.2052.info

今秋40年のグローバル予測

8.65'-5'-3+ 8+635-19580

10000

Jorgen Randers

A REFORT TO THE CLUB OF ROME COMMEMORATING THE 40TH ANNIVERSARY OF The Limits to Growth

World population will peak in 2040

Figure 4-1 Population – World 1970 to 2050

BI NORWEGIAN BUSINESS SCHOOL

Source: Randers, 2052, Chelsea Green, 2012 and Goluke, www.2052.info 2016

Fertility will continue to decline

Crude birth rate (in % per year)

Fertility will continue to decline

Crude birth rate (in % per year)

World GDP will grow more slowly than in past

The shift of 5 world regions from 2015 to 2050

Rate of growth in GDP per person per year (in % / yr)

BI NORWEGIAN BUSINESS SCHOOL

Source: Ozgun O et al, Future of Spaceship Earth Project, DNV GL report 2016-0524

Total energy use will grow, but more slowly

Figure 5-1: Energy Use – World 1970 to 2050

BI NORWEGIAN BUSINESS SCHOOL

Source: Randers, 2052, Chelsea Green, 2012 and Goluke, www.2052.info 2016

World use of fossil fuels will peak before 2040

CO₂ emissions from energy will peak in 2040

Temperature will pass +2 deg C before 2050

Man-made emissions (in GtCO₂e/yr)

Temperature rise (in °C over 1850)

BI NORWEGIAN BUSINESS SCHOOL

Source: Randers et al 2016, Earth System Dynamics Journal, doi:10.5194/esd-2016-13

Sea level rise (in meters over 1850 level)

BI NORWEGIAN BUSINESS SCHOOL

Source: Randers et al 2016, Earth System Dynamics Journal, doi:10.5194/esd-2016-13

The concentration of CO2 will peak in 2075

There will be huge regional differences

Consumption per person (in 1000 PPP US\$ per person per year) 36 USA OECD 30 China 24 World BRISE 18 RoW 12 6 0 1970 1990 2010 2030 2050 **NORWEGIAN BUSINESS SCHOOL**

Source: Randers, 2052, Chelsea Green, 2012 and Goluke, www.2052.info 2016

Main conclusions from the 2052 forecast

 World population and economy will grow more slowly towards 2052 than most people expect
but still fast enough to trigger a climate crisis

Consumption growth will slow because society will have to spend ever more labour and capital on repair and adaptation

 The short-term nature of man
reflected in the short term focus of democracy and capitalism is the root cause of this development

BI NORWEGIAN BUSINESS SCHOOL

What should be done?

To stop global warming it is enough to do a few things:

- 1. Replace all fossil generation of electricity with renewable (solar, wind and hydro) capacity
- 2. Replace all fossil based transport (cars, trucks, buses) with electric vehicles
- **3.** Insulate all buildings to gold standard
- Shift to climate-friendly procedures in agriculture, forestry and waste handling – to get rid of the last 20 % of man-made emissions
- 5. Retrofit carbon capture and storage (CCS) on remaining point sources (cement, steel, etc)

If done over next 35 years, the cost will be around 500 US\$ per person per year. The funds could be obtained through green taxes (very unpopular) or by printing new money (very unconventional).

BI NORWEGIAN BUSINESS SCHOOL

A much better future is indeed possible

- 1. Solving the climate challenge is technically feasible, and not very costly
- 2. It requires a shift of less than 2 % of the world's labor and capital from "dirty" to "clean" sectors
- **3.** This solution will resisted by the incumbent workers and owners in the dirty sectors
- 4. And by those who dislike higher taxes and more regulation
- 5. The challenge is purely political. It amounts to finding ways to do the shift which is supported by a majority of the voters.

The dream are climate policies that provide a short term benefit to a majority of the voters.

The EU carbon price has remained low

Simpler to use regulation than the market

Many good examples exist:

- a. The subsidy paid for solar and wind power in Germany (financing the energy transition)
- **b.** The exemption of electric cars in Norway from 100% import tax
- **c.** The ban of incandescent light bulbs in the EU (making low energy bulbs competitive)
- d. The ban of the use of heating oil in Oslo from 2020 (passed 10 years earlier)
- e. The green stimulus packages in Korea (paying workers to make the country more energy efficient)

It is time to act – decisively!

jorgen.randers@bi.no

www.2052.info

50 % of human CO2 ends in the atmosphere

Source: Global Carbon Project, Carbon Budget 2009

Global Surface Temperature (in °C over 1900)

No decline in Norway's emissions since 2006

BI NORWEGIAN BUSINESS SCHOOL

Source: Daniel Rees et al, Norsk klimapolitikk 2006-12, BI, Oslo, March 2013

Example: 1 % spent on solar capacity is enough

It costs 2 USD per W_{el} to install solar panels That is 2 G\$ per GW_{el}

The GDP (annual output) of the richest world (US and EU 15, some 600 million people) is around 30.000 G\$ per year

So one percent is 300 G\$ per year, which is enough to install 150 Gw_{el} per year

Total energy use (both electricity, fuel and heat) in this part of the world is some 6.000 GW (around 10 kW per person)

So by shifting 1 % of rich world GDP into building of solar capacity, one can replace all capacity in 40 years (= 6.000 / 150) – i.e. by mid-century

Temperature rise from various policies (in °C)

BI NORWEGIAN BUSINESS SCHOOL

Source: Randers et al 2016, Earth System Dynamics Journal, doi:10.5194/esd-2016-13

Sea level rise from various policies (in m)

Q&A

Professor Jorgen Randers & Dame Polly Courtice, Director, CISL

For business briefings, research, and information on all our activities, visit www.cisl.cam.ac.uk