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The types of materials used for solar cells differ in their properties, which  
enable the unique characteristics of the cells, such as flexibility, low weight  
and transparency. The material composition also has implications for circularity,  
which span across all life cycle stages of a panel, from the resource intensity of  
manufacturing to possible end-of-life strategies and ease of recycling. 

The effects of the solar cell materials on the circularity of solar modules were analysed  
using the example of six technologies. Drawing from desk research and consultation with  
experts, these include the commercially mature and the most advanced emerging technologies:

1. Crystalline silicon-based PV 

2. Cadmium telluride (CdTe)

3. Copper indium gallium (di-)selenide (CIGS)

4. Organic PV (OPV)

5. Dye-sensitised solar cells (DSSC)

6. Perovskites and perovskite-inspired1 solar cells (in the following as ‘perovskites’)

Figure 1: Categories of solar cell technologies2
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For the analysis, a set of six factors was developed 
using the Cambridge Innovation Velocity Tool.3 
The characteristics of the conventional crystalline 
silicon-based PV were considered the current 
industrial standard, and the potential strengths and 
limitations of the new technologies were compared 
to the conventional technology. The assessment 
was conducted following a two-stage process: 
first, a comprehensive review of current scientific 
publications and grey literature, such as industrial 
reports; second, the findings were validated through 
individual surveys of selected solar cell material 
experts. The results of this analysis are presented  
in Figure 2.

Conversion efficiency: The analysis on conversion 
efficiency includes both conversion efficiency in the 
laboratory and conversion efficiency in a real field 
operation. Higher efficiency solar cells generate more 
electricity per unit area, which means that fewer 
panels are needed to achieve the same energy yield, 
which has a positive impact on the environmental 
footprint in two ways. A higher efficiency means  
that the modules generate more electricity over  
their lifetime, and less land is needed to generate the  
same amount of electricity. The in-field efficiency  
of monocrystalline silicon solar cells reaches 20–25 
per cent and 15–20 per cent for polycrystalline cells.4  

With the exception of perovskite solar cells, which 
have a conversion efficiency (in laboratory) of up to 
35 per cent in tandem configurations with silicon,5  
the efficiency of the other materials is currently 
comparable or lower than the conventional cells. 

Durability and lifespan of solar cell materials: 
Durability is the ability of solar cell materials to 
withstand physical, chemical and environmental 
degradation over time. This includes factors such 
as humidity, temperature fluctuations, ultraviolet 
radiation, mechanical stress and corrosion. These 
factors influence how long the cell can efficiently 
generate electricity without a significant drop in 
performance. Reduced durability leads to earlier  
cell failure, a shorter lifespan and consequently  
more waste from a circular economy perspective. 

While the typical lifespan of a silicon solar panel 
is around 25 years,6 technological advances have 
extended module performance to 30–35 years.7  
CdTe and CIGS cells have achieved a similar 
performance.8 For other materials, this is an area 
where further research and development is needed, 
for example in terms of material improvements and 
innovative design approaches.9 

Availability and affordability of raw materials:  
The economic viability and circularity potential 
of solar cells are significantly influenced by the 
availability, geographic distribution and accessibility 
of the materials required for both the cells themselves  
and their manufacturing processes. Limited material 
availability tends to raise manufacturing costs 
and could hinder large-scale deployment of the 
technology, thereby affecting its economic feasibility. 
Consequently, sustainable manufacturing practices 
prioritise the use of abundant and easily accessible 
materials. 

Figure 2: Comparative analysis of solar cell technologies  
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From a circular economy standpoint, the scarcity of 
certain materials, particularly high-value ones like 
silver, gold, aluminium, copper and nickel, increases 
the incentive for their recovery and reuse, making it 
profitable. The mining of rare and scarce materials is 
often associated with serious environmental problems 
and pollution, especially in the Global South.10 Thus, 
circular approaches are important strategies in 
addressing these issues. If the materials are widely 
available, there is less commercial incentive in 
recycling leading to greater waste streams as shown in 
the example of silicon, which is the world’s second most 
abundant resource.11 Most conventional solar panels 
end currently as landfill.12

OPV is typically made of non-toxic carbon-based 
polymers and does not encompass any high-value 
materials.13 Compared to silicon-based cells and OPV, 
other technologies use rare materials and metals, eg 
tellurium in CdTe,14 rare metals for dye molecules and 
platinum for counter electrodes in DSSC.15 Perovskites 
require a variety of minerals and materials, and while 
rare earth metals are under investigation for doping in 
some cell designs, they are not necessarily required.16  

The other components of all types of solar modules  
also contain high-quality materials and critical metals 
such as aluminium, which is required for the frames 
and backsheets and is classified as a critical raw 
material (EU law on critical raw materials (CRM)17).  
The increasing demand for aluminium for the green 
energy transition could more than double the demand 
for aluminium by 2050.18 

Toxicity of raw materials and materials needed for 
manufacturing: Potential environmental and health 
hazards can be posed by using certain hazardous 
substances in the cells themselves as well as in the 
manufacturing, deployment and disposal stages of 
solar cell technologies. Key among these substances  
are heavy metals known for their toxic effects on 
human and environmental health when released. 

Lead is used in silicon and perovskite solar cells and 
is a commonly recognised issue driving research and 
development of lead-free cells.19 CdTe cells contain 
highly toxic cadmium and tellurium.20 In CIGS, the 
compounds of indium and gallium have a higher 
toxicity than these metals in their pure form,21 and 
selenium has toxic effects on aquatic ecosystems 
and humans when present in large concentrations.22  
Organic polymers and molecules required in OPV 
are generally considered less toxic than inorganic 
materials.23 Nanoparticles are used in DSSC and 
can pose some specific health and environmental 
problems.24 However, when used, solar cells must be 
designed for longevity. Disintegration and resulting 
leakage of toxic materials into the environment 

is not considered a major problem. The toxic 
substances present in solar cells can pose a significant 
environmental risk if they are not properly managed 
during disposal, reuse or recycling and are released 
into the environment.25 

Understanding the need for potentially hazardous 
substances in the manufacturing processes generally 
depends on how mature the technology itself is 
and whether it has reached volume production. 
For all solar technologies, the solvents used in 
manufacturing processes and at the end of the life 
cycle to separate and recover materials are often 
problematic chemicals, including some that may be 
volatile organic compounds (VOCs).26 If released into 
the environment, these substances can have direct 
toxic effects on humans, animals and plants. They 
therefore require strict handling and disposal methods 
to avoid contamination and damage. Research is being 
conducted into alternative organic (green) solvents.27

Resource intensity and ease of manufacturing:  
The amount of energy and other resources (including 
raw materials and water) required to manufacture 
a unit of production determines the environmental 
footprint of the solar cells themselves. The energy 
required to purify silicon to obtain solar grade (SG) 
silicon is extremely high, between 50 and 75 kWh per 
kg.28 This is significantly higher than that of all other 
PV technologies29 affecting the energy payback time of 
silicon-based modules. Although the in-field energy 
payback time for the other technologies30 is currently 
longer due to their lower efficiencies,31 this may change 
over time as ‘new generation’ technologies mature. 
For example, with economies of scale, thin-film PV 
technologies could have the advantage of potential 
low-cost and low-material production, which would 
improve their energy payback period.32  

As the decarbonisation of electricity in the public grid 
advances, the environmental impact of silicon solar cell 
production will improve. But it is also important to note 
that silicon (and large market shares of CIGS) cells are 
currently mainly produced in China,33 a country still 
heavily dependent on fossil fuels.34 And even despite 
energy transition efforts, the high energy intensity of 
silicon cell manufacturing requires energy efficiency 
measures and can also be seen as a driving factor for 
repair and refurbishment of the solar panels. 

In respect of ease of manufacturing, the production of 
silicon PV panels includes complex processes such as 
silicon purification, crystal growth, wafer slicing and 
cell fabrication, but it has become more standardised 
and well established. CdTe scaled production has been 
successfully demonstrated and commercially deployed 
by First Solar, as well as some other companies in 
the US, EU and China.35 CIGS are produced through 
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advanced methods like sequential processes (eg 
AVANCIS),36 demanding a high degree of precision and 
sensitive process conditions, increasing complexity 
of manufacturing. Nonetheless, the first commercial 
manufacturing sites such as Japan’s Solar Frontier37 
demonstrate the competitiveness of large-scale CIGS 
product. OPVs can be manufactured using roll-to-roll 
printing processes.38 This method allows for rapid and 
large-scale production, significantly reducing costs and 
making the technology more accessible.39 Fabrication 
of DSSC is done at lower temperatures compared to 
silicon and using relatively simple techniques, such 
as screen printing or doctor blading, contributing to 
simplicity of production, scalability and the potential for 
lower production costs.40 Various scalable techniques 
have been explored for perovskites, including slot-die 
coating, spray coating and co-evaporation or hybrid 
processes,41 with roll-to-roll (R2R) and sheet-to-sheet 
(S2S) processes being promising for large-scale 
production.42 Perovskite cells also have a greater 
tolerance to defects in the structure than silicon, 
contributing to ease of manufacturing.43 Currently, key 
challenges include achieving uniform quality of films 
over large areas and controlling crystallisation,44 while 
the first companies are establishing in the market.45  

In summary, the manufacturing costs of silicon 
solar panels are significantly driven by its energy 
intensity; and, therefore, all thin-film technologies 
share the advantage of the potential for low-cost and 
low-material production, and fast energy paybacks, 
provided economies of scale are achieved.46 

Economic and environmental perspectives of 
recyclability: Four aspects related to recycling and 
recovery of the materials used in solar cells are 
evaluated here: 

1. Technology readiness level (TRL) of the 
equipment required and ease of recycling  
and recovery processes 

2. Energy- and resource-intensity of recycling  
and recovery processes 

3. Achievable quality of the recovered materials

4. Market demand for the recovered materials 

The global market demand for materials recovered 
from silicon-based PV is on the rise, driven by the 
solar industry’s growth, sustainability efforts and 
the need for raw materials. Key recovered materials 
include high-purity silicon, valuable metals like silver, 
aluminium and copper, as well as glass. These materials 
are highly sought after in various industries, including 
electronics, automotive and renewable energy, due to 
their critical role in product manufacturing.  

The demand is estimated to grow substantially over the 
next decade, with market estimates for a Compound 
Annual Growth Rate (CAGR) of 19.3 per cent between 
2024 and 2029.47  Silicon-based PV recycling is complex, 
while the mechanical processes have commercialised 
in Europe and other approaches are relatively mature. 
Although technological advancements are still 
needed, existing processes face challenges related to 
costs.48 The economic viability of recycling of silicon 
solar panels often hinges on the recovery rates of the 
valuable materials and their market prices.

In CdTe PV technology, cadmium and tellurium are two 
valuable materials that drive the need for recycling, 
reuse and reprocessing of solar cells, especially as 
their market share is expected to grow in the future. 
The metals are typically recovered with the chemical 
leaching process.49 First Solar has developed and tested 
commercial recycling models for CdTe panels, capable 
of recovering up to 90 per cent of the tellurium and 
other materials for reuse.50  

CIGS, DSSC and perovskites contain a wide range 
of partially toxic materials but also rare and critical 
materials, which increases the need and complexity 
of requirements on recovery and recycling. Given 
that these technologies are in earlier maturity stages, 
material recovery has been demonstrated in lab 
conditions, but different technological challenges exist 
and therefore, the recycling processes require further 
development. For example, in the case of perovskite solar 
cells, the literature suggests recovering and reusing the 
most valuable components, such as glass/transparent 
conducting oxide  (TCO) substrates, while the remaining 
parts of the cell are recycled using layer-by-layer or one-
step methods that have been tested under laboratory 
conditions.51 Similarly, for organic photovoltaics (OPV), 
it is recommended to recover valuable materials like 
silver electrodes and indium tin oxide (ITO) substrates 
through chemical and physical processes, highlighting 
the economic advantages of recycling in reducing 
overall cell costs.52 However, recycling processes for 
emerging technologies are less developed, putting 
them at a disadvantage compared to silicon-based 
cells. The advancement of recycling methods for these 
newer technologies will also depend on future market 
adoption, the availability of panels ready for recycling, 
and the demand for specific materials. Ecodesign of solar 
cells is also an emerging area of research.53

Finally, despite the differences between various types 
of solar cells, the panels share common structural 
components, such as glass, frames, connectors and 
wires. These components can be reused, recovered, or 
recycled on a commercial scale, while others such as 
encapsulant and backsheet materials require further 
development of recycling processes.54 
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